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Borohydride reduction of a Borromean Ring (BR) complex

containing six zinc(II) ions and 12 imine bonds has resulted in

its demetallation, producing a neutral BR compound and also

its free macrocycle, following cleavage of at least one of the

imine bonds in the ethanolic reaction mixture.

The synthesis of topologically distinctive molecular compounds,1

which has taxed the intellects and tested the dexterity of chemists

for some time now, has led to the emergence recently2,3 of

nanoscale Borromean Rings (BRs) in addition to the much more

common molecular catenanes and knots.4 The production of the

nanoscale BRs has been accomplished using an approach in which

a collection of molecular recognition elements, including six metal–

ligand coordination sites and six donor–acceptor–donor interactive

units, act in unison with supreme efficiency.

The template-directed synthesis5 of the nanoscale BRs (Fig. 1a,b)

relies upon (i) the dynamic covalent chemistry6 associated with the

formation of 12 imine bonds7 from six 2,6-diformylpyridine

molecules and six diaminobipyridine ligands, (ii) the dynamic

coordination chemistry8 involving six exo-oriented bipyridine

ligands and six endo-oriented tridentate bis-Schiff bases in the

formation of 30 dative bonds and (iii) the dynamic supramolecular

chemistry9 surrounding the stabilisation afforded by 12 donor–

acceptor interactions between pairs of para-disubstituted phenolic

residues and 2,29-bipyridine ligands chelated to six zinc(II) ions.

Even when the nanoscale BRs have reached molecular fruition,

there is still the opportunity for them to exchange their 2,6-

diformylpyridine components under the appropriate conditions.

Although we have recognised10 this scrambling ability, following

experiments where the pyridine diimine precursors are labelled

with chlorine and bromine atoms in their 4-positions, we believe

the overall structural integrity of the molecules is largely

maintained during the exchange process. Bearing in mind that

one of the fundamental properties of the Borromean link topology

is the fact that, as soon as one of the three rings is severed, the

other two rings part company, no evidence was found at all in the

scrambling experiments10 for this level of disassembly. It is clear

that, in order to produce real Borromean links (Fig. 1c) on a

molecular scale from the BR compounds already described in the

literature,2,10 we have to achieve two goals simultaneously – one is

to remove all six zinc(II) ions from the molecule and the other is to

reduce all 12 imine bonds in the molecules to secondary amine

functions. In this communication, we report the realisation of the

fully demetallated{ molecular Borromean links, and also provide a

chemical proof§ of their structure, i.e., when one of the three rings

is cleaved, the other two can fall apart (Scheme 1).

The production of the demetallated BRs 2 was accomplished

(Scheme 2; Conditions A) by treating a 1.4 mM ethanolic solution

{ Electronic supplementary information (ESI) available: synthesis, 1H–1H
COSY, MS, ion-binding. See http://www.rsc.org/suppdata/cc/b5/
b505730b/index.sht

Fig. 1 (a) Crystal structure of the BR complex 1. Graphical representa-

tions of (b) the Zn(II)-containing complex 1 and (c) the metal-free BR

compound 2. The red, blue and green macrocycles have identical

constitutions. The thinner regions of the tubular rings in (b) represent

the dynamic imine bonds present in 1.

Scheme 1 Graphical representation of the cleavage of one of the

macrocycles (blue) during the borohydride reduction reaction of 1

resulting in the disassembly of the BRs to produce two macrocycles,

which fall apart spontaneously to give 3 and a linear component 4.

Scheme 2 Schematic representation of 1 and 2, in which only the blue

ring depicts all of the atoms and bonds present in the macrocycles that

make up the BR structure. Reduction of the imine bonds in 1 followed by

demetallation of the BR complex in an ethanolic solution (A) at 22 uC,

produces the demetallated BR 2 along with 3 and 4, and (B) at 80 uC, only

the macrocycle 3 and linear fragment 4.
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of 1 with an excess of NaBH4 at 22 uC in an inert atmosphere.

After stirring the solution at this temperature for 5 days, the

reaction mixture was quenched with H2O, followed by the

addition of an excess of EDTA in order to remove the Zn(II)

ions. After work-up of the reaction and isolation of the product

(see Electronic Supplementary Information{), characterisation was

achieved by high resolution electrospray ionisation (HR-ESI) mass

spectrometry and 1H NMR spectroscopy. A preliminary 1H NMR

spectroscopic investigation in CD3SOCD3 of the crude product

isolated from the reaction mixture revealed (Fig. 2b) the absence of

the peak for imine protons which were present (Fig. 2a) as a singlet

(d 5 9.02 ppm) in the 1H NMR spectrum of 1. Analysis of the

spectrum (Fig. 2b) revealed, however, that there were two sets of

seven resonances, indicating that more than one highly symme-

trical product had been formed" during the borohydride

reduction. Although the corresponding peaks in each of the two

sets displayed the same coupling constants, one set of peaks was

shifted slightly upfield with respect to the other set. By comparing

the 1H NMR spectra shown in Figs. 2a and 2b, one of the

products of the reaction can be assigned to one set of seven signals

centred on d 5 6.36 (H-g), 6.59/7.01 (H-e/f), 7.21 (H-b), 7.46 (H-i),

7.62 (H-a) and 7.89 (H-h) ppm, while the other product can be

associated with another set of seven signals centred on d 5 6.87

(H-g9), 7.04/7.41 (H-e9/f9), 7.32 (H-b9), 7.64 (H-i9), 7.74 (H-a9) and

8.34 (H-h9) ppm. In a second demetallation in which a 1.0 mM

ethanolic solution of 1 was heated with an excess of NaBH4 at

80 uC for 16 h in an inert atmosphere (Scheme 2; Conditions B),

the 1H NMR spectrum, which was recorded after work-up of the

reaction, revealed (Fig. 2c) the presence of only one of the two sets

of seven signals – namely, the downfield set – identified in the

product of the first demetallation.

Further investigation by HR-ESI mass spectrometry helped to

reveal the identity of the two products: addition of one drop of

TFA to the first reaction mixture (Conditions A), prior to

recording its HR-ESI-MS, revealed (Fig. 3a) the presence of three

major peaks at m/z of 1505.6834, 1004.1120, and 753.3363,

corresponding to [M + 2H]2+, [M + 3H]3+ and [M + 4H]4+

respectively, an observation which is consistent with the product

being the fully reduced, completely demetallated BRs, i.e., 2. The

HR-ESI-MS of the product from the second demetallation

(Conditions B), treated likewise with a drop of TFA, revealed

(Fig. 3b) one major singly-charged peak for [M + H]+ at 1003.4418,

an m/z value which correlates exactly with the mass of only one

ring fully reduced, viz., 3, for which the calculated [M + H]+ is

1003.4402, in keeping with the molecular formula, C62H54N10O4.

The result indicates that, in the second demetallation, where the

borohydride reduction was carried out at an elevated temperature

(80 uC), the three rings have indeed fallen apart during the

reaction. We suggest that, under basic conditions, the imines can

react with trace amounts of ethoxide ions to form a tetrahedral

O-ethyl hemiaminal intermediate that produces, after work-up of

the reaction, the free aldehyde from the hydrated one or the diethyl

acetal 4.I The result of the irreversible scission of one of the rings

allows, once the demetallation reaches completion, the other two

rings to fall apart and hence to be isolated as their fully reduced

derivatives, i.e., 3, along with a linear fragment which we suggest

could be the diethyl acetal 4. There is evidence from the HR-ESI-

MS of the TFA-treated ethanolic solution of the reaction mixture

for the presence of the linear fragment containing the diethyl acetal

4 (see Electronic Supplementary Information{). A singly charged

peak with a m/z of 1093.5147 for [M + H]+ equates with a

calculated [M + H]+ of 1093.5083 for M 5 C66H64N10O6.

Although it is possible that other linear fragments are formed

during the borohydride reduction, there is no evidence for them in

the mass spectrum.

Fig. 2 Partial 1H NMR spectra (600 MHz) recorded in CD3SOCD3 of

(a) the BR complex 1 and the contents of reaction mixtures containing (b)

the fully reduced, demetallated BR compound 2 plus free macrocycle 3

and (c) the free macrocycle 3.

Fig. 3 HR-ESI-MS of reaction mixtures (a) A in methanol plus TFA

showing the presence of peaks corresponding to the reduced BRs 2 and (b)

B in ethanol plus TFA showing the presence of peaks corresponding to the

macrocycle 3 and linear fragment 4.
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The information obtained from mass spectrometry provides

further insight into the 1H NMR spectroscopic data (Fig. 2b)

acquired from the first (Conditions A) of the two borohydride

reductions performed on 1. It indicated the presence of two highly

symmetrical products, namely the fully reduced, demetallated BRs

2 and the component macrocycle 3 in which all four imine bonds

have been reduced to secondary amine functions. In Fig. 2b, we

attribute (see Electronic Supplementary Information{) the upfield

set of seven signals to 2 and the downfield set to 3. The fact that

the resonances for 2 appear at higher field than those for 3 suggests

that there are p–p stacking interactions present in the BR

compound that are absent in its ring components when they

become free from each other.

Aside from this piece of research providing the intellectually

satisfying chemical proof§ for the Borromean link topology in 1, it

has produced a real BR compound, minus its metal ion templates,

where the three rings are genuinely mechanically interlocked

according to the expected topology.
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Furthermore, upon removal of the metal ions, the term ‘Borromeand’ is
suggested for the resulting metal-free compound. This terminology is akin
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of metal ion-containing catenanes and their derivatives – which he refers to
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noted, however, that, in the case of the Borromeate presented in this
communication, the Borromeand is not obtained through simple
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bonds. The term ‘catenand’ was introduced in 1984. See: C. O. Dietrich-
Buckecker, J.-P. Sauvage and J.-M. Kern, J. Am. Chem. Soc., 1984, 106,
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case, this enzymatic scission yielded a mixture of products consistent with
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the linear debris resulting from the destruction of the third ring in the
original structure. See: C. D. Mao, W. Q. Sun and N. C. Seeman, Nature,
1997, 386, 137–138.

" Attempts to purify the reaction mixture using column chromatography
and recrystallization were unsuccessful. This failure arose from the fact that
the compounds adhere to both silica and alumina stationary phases on
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I Under basic conditions, the rate of hydrolysis of the chelated Schiff base
will be independent of pH and the rate determining step will be the
nucleophilic attack of ethoxide ions on the chelated Schiff base. The
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